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1 Introduction

In this paper, we investigate performance of a fully implicit formulation and
solution method of a diffusion-reaction system modeling radiation diffusion
with material energy transfer and a fusion fuel source. In certain parameter
regimes this system can lead to a rapid conversion of potential energy into
material energy. Accuracy in time integration is essential for a good solution
since a major fraction of the fuel can be depleted in a very short time. Such
systems arise in a number of application areas including evolution of a star
[1] and inertial confinement fusion [2].

Previous work has addressed implicit solution of radiation diffusion prob-
lems [3, 4, 5, 6, 7, 8]. Recently Shadid and coauthors have looked at implicit
and semi-implicit solution of reaction-diffusion systems. In general they have
found that fully implicit is the most accurate method for difficult coupled
nonlinear equations [9, 10]. In previous work, we have demonstrated that a
method of lines approach coupled with a BDF time integrator and a Newton-
Krylov nonlinear solver could efficiently and accurately solve a large-scale,
implicit radiation diffusion problem [7, 8]. In this paper, we extend that work
to include an additional heating term in the material energy equation and an
equation to model the evolution of the reactive fuel density. This system now
consists of three coupled equations for radiation energy, material energy, and
fuel density. The radiation energy equation includes diffusion and energy ex-
change with material energy. The material energy equation includes reaction
heating and exchange with radiation energy, and the fuel density equation
includes its depletion due to the fuel consumption.

In many applications, the added heat source involves a reaction rate with
a strong nonlinear dependence on material temperature and thus provides a
good test for an implicit solution method. We use an approximation to the
reaction rate valid for temperature regimes less than 1 keV where the rate
has its strongest dependence on material temperature. In particular, the rate
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depends on temperature to the fifth power in this regime. While the actual
reaction rate drops off at high temperature, we use the the fifth power fit for
any temperature in order to investigate the performance of implicit solution
techniques on problems with strong nonlinearities.

The remainder of this paper is organized as follows. The next section
describes the model and presents the equations we are solving. Section 3
describes the implicit solution method we employ, and Section 4 presents
numerical results illustrating accuracy and efficiency of the solution method.
Conclusions are presented in the last section.

2 Model

We consider a flux-limited formulation of radiation diffusion including a model
for heating due to a fusion source term. The evolution of the fusion fuel density
is determined by an equation which models the depletion of the fuel as its
fusion energy is added to the material energy.

The radiation diffusion model is given by [11, 12]

6ER Cc 4
7k _y. E Tor) - —
where Eg(x,t) is the radiation energy density (x = (,y,2)), Ta(x,t) is the
material temperature, p(x) is the material density, c¢ is the speed of light, and
a = 40 /c where o is the Stephan-Boltzmann constant. The Rosseland opacity,
KR, is a nonlinear function of the radiation temperature, Tr, which is defined
by the relation Egr = aTs. The Planck opacity, kp, is a nonlinear function
of material temperature, T, which is related to the material energy through
an equation of state, Epy = EOS(T). In this paper, when we take variable
opacity and specific heat their values are taken from the LEOS equation-
of-state package [13] which determines opacities and specific heats via table
look-up. In some simplified test problems we use the relation, Eyy = pc, T,
for the specific heat and constant values for opacities. In the flux limiter, the
norm || -|| is taken to be the I? norm of the gradient vector. In the simulations
presented here we use either Dirichlet or Neumann boundary conditions on
the radiation energy.

This equation is solved in conjunction with two other equations, one being
the conservation of material energy [11, 12] given by

OEM

T 5
W _ —CPHP(TM) . (CLTJ[\l/[ — ER) + era'va2 ( M) . (2)

To

The heating term is controlled by a fusion model [14](p. 13) of fuel density

given by
opp _ _ 2 (Tm °
at - UUpF ( TO ) ’ (3)
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where pp is the fuel density. This evolution equation has been used in con-
trolled fusion models [15](p. 322).

The fit to the reaction rate gives, o, = 1.43 x 10° 822"_:, with a reference
temperature, Ty, of 1 keV. For the energy per reaction we use, e, = 1.35 X
10'8 _£24- This value corresponds to the alpha particle energy from deuterium
tritium filsion. We neglect the neutron energy from the reaction and assume
the alpha particle has zero range, thus depositing its energy locally.

Both the material energy and the fuel density equations contain the non-
linear temperature dependence term (T /T5)°. This dependency is a good fit
to a tritium-deuterium reaction rate at low temperature (less than a few keV)
such as in a tokamak fusion experiment [16] (p. 29). The reference tempera-
ture, Tp, is a normalization constant (1 keV) included to simplify the units of
the fitted reaction rate o,. The actual reaction is less strongly dependent on
Ty above 1 keV, but, as noted above, we will use this approximation above
that temperature.

The fusion fuel is assumed to be a 50:50 mixture of tritium and deuterium
with pp representing the tritium or deuterium density. The binary nature of
the reaction leads to the p,? dependence in the reaction rate. The energy per
reaction added to the material energy equation is e,.

Obviously there are a significant number of physical processes omitted
from this simple model. One relevant to the deposition of heat, is that we
assume the energy of reaction is deposited locally. The correct physical process
would distribute the heat spatially due to the finite range of the charged
particles in the matter. We chose not to model this nonlocal effect here.

3 Numerical Methods

In this section we present both the spatial and temporal discretization meth-
ods used for solution of the system (1)-(3).

3.1 Spatial Discretization

For spatial discretization, we employ a cell-centered finite difference scheme.
We use a tensor product grid with N, Ny, and N, cells in the z,y, and
z directions, respectively. Defining Eg; j(t) ~ Er(Xijk,t), Em,ijk(t) =
Ey(Xijk,t), and pp; o . (8) & pp(Xijk,t) with X, = (24,95, 2¢), and

Eri,1,1 Erai, Pri,1,1
Er = : Em = : Pr :

ER,N,,N,.N. Epm N, ,N,,N. PF,N, N, N.

we can write our discrete equations in terms of a discrete diffusion operator
given by
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T

L(Er) = (L111(ER),---, LN, n,.N.(ER)) ", (4)
a local coupling operator given by
S(Er,Em) = (S1,1,1(Er,Em), -+, SN, v, (Br, Em)) 7, (5)
and the local reaction rate operator given by
R(Em, pr) = (R1,1,1(Em, pF), - > Rvo v, v (B, pr)) 7, (6)
where, as in [§]
Lijrx(Er) =
Egit1,jk — ERijk Erijr — ERri—1jk
Dy o i p it Lod, bik _p. | b A Lik ) Ag (7
( 1’+1/2a]7k Amz—{—l/Q,J’k T 1/2:Jak Amif]_/z’j,k / SL‘, ( )
Eg;ji1,k — ERrijk Erijr— ERrjij 1,k
+ D . »0J ) v _D . EaVE) 207 ) Ay
( I/ Ay jy1/2,k b= 1/2k Ayii—1/2.k /4vs
Egjrr1 — ERrijnk Er;jk— Eryijr1
+(D,. i ik _po shd, shd Az
( 1737k+1/2 Azz,],k+1/2 za]vk 1/2 Azi,j’k71/2 /

with the diffusion coefficients evaluated on the face centers,

c
D’i -
+1/27.77k - ’
3piv1/2,j kbR it1/2,5k T IVER|iv1/2,5.6/ ERiv1/2,5.k
c
Di71/2,j,k =

3pi—1/2,j,kkRi—1/2,5,k + IVER|li—1/2,5,k/ ERji-1/2,5,%

with y and z terms similarly defined,
Sijk(BRyi gk, Baijk) = piktipigk (aTarijx — Brigk) - (8)
and
Toriin\
Ri i k(EMijk,> PFijk) = va%‘,z’,j,k (Tizoj) . 9)

Thus, our discrete scheme is to find Eg(t) and Ep(t) such that,

dEgr

4 = L(Er) + S(Br, En), (10)
dE
d—;"[ = —S(Er,Ewm) + ¢,R(Em, pr), (11)
d
% = —R(Ewm, pr). (12)

For more details, see [8, 7).
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3.2 Time Integration

We formulate (10)-(12) as an implicit system of ordinary differential equations
(ODEs) and use an ODE time integrator to handle the implicit time step
selection. In particular, we employ the parallel ODE solver, CVODE [17],
developed at Lawrence Livermore National Laboratory and included in the
SUNDIALS package [18]. CVODE employs the fixed leading coefficient variant
of the Backward Differentiation Formula (BDF) method [19, 20] and allows
for variation in the order of the time discretization as well as in the time step
size. Time step sizes are chosen to minimize the local truncation error and
thus give a solution that obeys a user-specified accuracy bound.

This time integration technique leads to a coupled, nonlinear system of
equations that must be solved at each time step. For example, solving the
ODE system

y=rfty), (13)
with the backward Euler method leads to the following nonlinear system
% = f(tn;yn) (14)

that must be solved at each time step. For the solution of this system, we use
an inexact Newton-Krylov method with Jacobian-vector products approxi-
mated by finite differences. As the methods in CVODE are predictor-corrector
in nature, an explicit predictor (e.g., forward Euler in the case above) is used
for an initial guess in the nonlinear solve.

In the methods discussed above, we use the scaling technique incorporated
into CVODE. Thus, we include an absolute tolerance (ATOL) for each un-
known and a relative tolerance (RTOL) which is applied to all unknowns.
These tolerances are then used to form a weight which is applied to each so-
lution component during the time step from #,_1 to t,. This weight is given
as

w; = RTOLly._,| + ATOL; (15)

and is also used to weight a root mean square norm

N 1/2
lyllwrms = [N_l Z(yi/wi)Z] (16)

which is applied to all error-like vectors within the solution process.

We use the GMRES Krylov iterative solver for solution of the linear Ja-
cobian system at each Newton iteration [21]. The tolerance for the Newton
iteration is taken to guarantee that iteration error introduced from the nonlin-
ear solver is smaller than the local truncation error. For more details regarding
the step size and order selection strategies in CVODE, as well as acceptance

of a step and nonlinear convergence, we refer the reader to the review article
[18].
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3.3 Preconditioning

Preconditioning is generally essential when using Krylov linear solvers. To
describe our preconditioning strategy, we begin by considering the content
and structure of the Jacobian matrix. In (13), set y = (Er”,Em”,pr )7,
and then form f using the right-hand sides of (10)-(12). The Jacobian matrices
used in the Newton method are of the general form F'(y) = (I — «vJ), where
J = 0f [Qy is the Jacobian of the nonlinear function f, and the parameter vy =
At with At the current time step value and 3 a coefficient depending on the
order of the BDF method. Recalling the definitions of the discrete divergence,
coupling and reaction rate operators, the block form of the Jacobian of f is

6L/6ER + GS/GER 6S/6EM 0
J= —8S/0Er ~ —0S/0Epm + e,0R/0EM e, OR/Ipp
0 _OR/0Em _OR/0pg
A+G B 0
= -G —B+e.C e.H |,
0 -C -H

where A = OL/0ERr, G = 0S/0ER, B = 0S/0Em, C = 0R/0EMm, and
H = 0R/0pp. We note that G,B, C and H are diagonal matrices. In all
of our preconditioning strategies, we neglect the nonlinearity in the diffusion
term and use the approximation [8, 7]

A =0L(ER)/0Egr ~ L(ER) = 4,

where OL(ER)/8ER is the Jacobian of L evaluated at a radiation energy, Eg.
The size of the neglected term is related to the derivatives of the Rosseland
opacity and the flux-limiter. Our motivation for neglecting this term arises
from the fact that —A is symmetric and positive definite, whereas —A is not,
and we thus can use multigrid methods for solution of diffusion terms within
the preconditioner. y

Our preconditioning strategy is to factor the matrix, M = I — vJ, as

P Q 0 I—v(A+G) —4B 0
U T V|]= G I—~(e.C—B) —veH | =M
0 Y Z 0 ~C I+~H

The preconditioner solve then consists of solving Mg.py-z = b for z where,

IQT' 0 500 I 0 0
Msehur =0 T VZ7! 070 T-'U I 0 (17)
0 0 I 002 0 z7'vI

with S =P — QT U and T =T — VZ Y. Thus,
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x S_~1 by - Qf_lb;)
o = T_l(bQ — U.flfl) (18)
I3 Zﬁl(bg — YIL'Q)

where by = by — VZ~1bs.

If the Schur complement, S, is exactly inverted, there will be no error
associated with this preconditioner for the non-flux-limited, constant opacity
case. In addition, because G, B, C, H and hence T and Z are diagonal, there
is no penalty associated with inverting T for every iteration of a method that
inverts S. Also note that S is formed by modifying the diagonal of P and thus
is composed of a symmetric diffusion-like matrix with a modified diagonal.
Hence, we can employ multigrid methods to invert this Schur complement.

Dependence of opacities on temperatures can give rise to large spatial gra-
dients and thus a very heterogeneous problem. Hence, to invert the Schur
complement matrix, S, we use a multigrid method designed to handle large
changes in problem coefficients. In particular, we use one V-cycle of a semi-
coarsening multigrid algorithm, such as the ParFlow semi-coarsening Multi-
Grid (PFMG)[22] or the Semi-coarsening MultiGrid (SMG) developed by
Schaffer [23, 24] as our multigrid solver. Semi-coarsening multigrid methods
have been found to be quite effective on highly heterogeneous problems. A
comparison of PFMG and SMG can be found in [25]. Details of both these
methods can be found in the cited references, and more information about
multigrid methods in general can be found in [26].

4 Results

In this section we demonstrate the above solution method on the implicit
formulation of (1)-(3). In the first two subsections we present illustrations of
problems modeled by this system of equations. In the next two subsections
we give results which verify the accuracy and convergence of the method.

4.1 1D Solution Illustration

In this section we illustrate how the time evolution of the solution is affected by
the initial fuel density. This 1D problem has a domain from 0 ¢m to 10.0 em.
The fuel is initialized using a step function with fuel density, pp,, on the
left half of the domain and 0 on the right. The initial radiation and material
temperatures are equal and constant in the domain. Neumann boundary con-
ditions are applied on the left boundary, % = 0, while Dirichlet boundary
conditions are applied on the right boundary with the temperature set to the
initial value.

Results are presented for two different initial conditions; one with a high
fuel density, and the other with a low fuel density. The high density simulation
has pp, of 0.03 g/cm?® and T = T of 0.5 keV. The low density simulation
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uses pro = 0.01 g/ cm?® and Tr = T = 0.776 keV . These initial temperatures
were selected so that the initial heating rates, p% T'5;, are approximately the
same for both simulations.

Fig. 1 illustrates the evolution of the radiation and material temperature,
as well as fuel density of a point near the left boundary. As can be seen, the
high density case yields a very rapid increase in material temperature and
consumes most of the fuel. The low density case results in a slower evolu-
tion of the material temperature. The slowly changing temperature allows for
more energy to be transfered to the radiation and loss via diffusion. Since the
temperature is lower in this case, a smaller fraction of the fuel is consumed.

Fig. 2 shows profiles of radiation temperature, material temperature, and
fuel density at various times for the pp, = 0.03 g/cm® simulation. Diffusion
loss of energy results in a lower temperature in the outer region. Thus, the
inner region begins to consume fuel and heat up sooner than the outer region
resulting in a steep temperature gradient that sweeps through the fuel region
(see Fig. 2). These results are similar to the reaction-diffusion wave results
presented in the next section.

Fig. 3 gives the history of the time step and integration order for the higher
fuel density case. The smallest step size, which occurs during the rapid heat-
ing stage, is 3.26 x 10~3us. The longest time, in the quiescent period at the
end of the simulation, is 5.31 x 10~*us. This large difference in step sizes illus-
trates the ability of our method to select time step size and integration order
resulting in the largest time step possible subject to the accuracy constraints.

Py = 0-01 Py = 0.03
0.015
1.4
10" - 107
<12 o A~ - R A
e Y = E 3 <+ Ty 5§
< 001 H = 0 10° 3D
Py 2 5 - F S
5 2 5 2
g0 2 = L 2
g 8 g 107 8
£08§ = 0.005 - £ =
'q_) - R g 'a_a o 35
04 |4 T, e 10 107 L
P
0.2 = F y '
0.01 002 003 0.04 0.05 0.01 002 0.03 0.04 0.05
time (us) time (us)

Fig. 1. Evolution of radiation temperature, material temperature, and fuel density
for two simulations. Values plotted are for a point near the left boundary. Linear
scale used on the low density case and a log scale used on the high density case.



Implicit Solution of Non-Equilibrium Radiation Diffusion 9

Radiation Temperature Material Temperature Fuel Density

2.5 ¢ t=0.0002 us 1

O t=0.0076 us

) "‘*"’%s,ssx x  t=0.0082 us
O t=0.0598 ps

(keV)

5 5 5
r (cm) r (cm) r (cm)

Fig. 2. Radiation temperature, material temperature and fuel density profiles at
various times for the pro = 0.03 g/cm3 run.

-3

10

Time Step (us)

- O_rder
| - Time Step
10 1
0 0.01 0.02 0.03 0.04 0.05

time (us)

Fig. 3. History of time step and integration order.

4.2 1D Reaction Diffusion Wave

In the previous section we initialized the simulation with a uniform initial
material temperature and a step function for the initial fuel density. The sim-
ulation in this section begins with a uniform fuel density and a step function
in the initial material temperature. These initial conditions produce a reaction
diffusion wave which is propagated by the diffusion of radiation energy and is
driven by the energy from the fusion reaction.

The 1D domain for this simulation is 0.0 to 2.0 ¢m, with a uniform fuel
density of 0.1 g/cm?, and uses 200 grid points. The initial background radia-
tion and material temperatures are set to 0.1 keV except for a small region on
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the left from 0 to 0.1 em where the material energy is initilized to 2.0 keV. The
reaction parameters are, o, = 1.43 x 103 % ande, = 1.35x 1018%. This
simulation also uses the LEOS equation-of-state data base [13] for hydrogen.

The high density region begins to heat much faster than the remainder of
the domain. Diffusion of radiation energy heats the material in front of the
wave leading to more heating due to the fusion reactions. Fig. 4 gives profiles
at four different times.

Time = 0.00000 ps Time = 0.00030 ps

0.1
S e S =
~ o (=]
g 2 £ 0.06 >
g g s g
aé-a_ g aé-a_ 0.04 8
2 ;e 002 3

0

0.1
S e S =
~ o (=]
g 2 £ 0.06 >
g % g oo4§
=3 o o A
g 3 & 5
A 2 e 0.02 5

o

Fig. 4. Profiles at various times for a reaction diffusion wave moving from left to
right.

4.3 0D Analytic Test

In this section we demonstrate accuracy of the implicit solution for fusion
heating of the material and the fuel evolution by a comparison with an analytic
solution.

In order to obtain the analytic results, two simplifying assumptions are
made. First, we assume kp = 0. This assumption eliminates the exchange of
energy between radiation and material and thus removes the radiation energy
equation and diffusion from the system. With this assumption the material
energy equation reduces to,
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OBy o (T’
W_GTUUPF (TO) - (19)

Second, the relationship between Ejs and Ty, normally determined by tables
in LEOS, is replaced by the simple linear relation, Enyr = pc,Thr, where the
specific heat, c,, is assumed to be a constant.

From the coupled pair of equations (19) and (3), it can be shown that the
sum of the material energy, E)js, and the potential nuclear energy, e, pp,

W = Em + e,0p, (20)
is independent of time. Thus we can use the conservation relation,
Bu(t) + erpp(t) = Enio + €0, (21)
to eliminate Ear(t) from (3), which becomes,

e — () (- pe()’ (22)

5
where b = Eumo/er + Ppg and 7 = oy (pCGTTo) t, and where the initial fuel

density and material energy are pp, and Fyrg, respectively.
With some help from Mathematica the solution can be expressed as a
transcendental equation,

L(pro) + P(pro) = L(pp(7)) = P(pp(7)) =T, (23)
where L and P are given by,
L(py(r)) = 3 (109 py (7)) — log(pye(r) 1) (24

and,

—4b* + 39p3 g (1) — 2899292 (7) 4+ T0bp3.(T) — 4 (r
P(pp(r)) = T pF(4I))5 (bipﬁig)zgp(?_)plr( ) — 2007 ( ) (25)

This analytic result can be used in two different ways. We could solve
the transcendental equation (23) for pp(7) at a number of different times,
T, then compare these values with the computed solution from our code. Or,
we could use equation (23) to solve for 7 when pp(7) is some fraction, «,
of the initial value, pr(0). We chose the latter method, since it avoids any
computation error associated with a transcendental solution. The time at
which pp(7) = app, is obtained from (23),

Ta = L(Ppq) + P(Pro) — L(appy) — P(apg) (26)

The 7, and thus ¢, determined by the above equation, is used to verify
our solution. After we have established the parameters for a test run and
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selected a value for a, we use this equation to determine a stopping time
for the simulation. The simulation computes the final fuel density, and this
density is then compared to the expected appg.

For this test problem we use the following parameters, p = 1.0 g/cm?,

¢y = 5.755 x 101 erg/keV, e, = 1.35 x 10° -2 and o, = 1.43 x 10% -<2°_,
The initial material temperature is 50.0 keV, and the initial fuel density is
0.1 g/cm?®. We chose three values of a, (0.5, 0.1 and 0.01), to determine check
point times. These times are indicated on Fig. 5 which gives the fuel density
versus time for this simulation.

Table 1 gives the relative error in fuel density for values of RTOL from
10~* to 1072 along with the number of time steps, NST. We see that the
error decreases linearly with the RTOL value indicating good convergence
of the implicit solution method. We also see a fairly large increase in the
number of time steps required to resolve the solution for RTOL values less
than 10~%. As one would expect, requiring very high accuracy comes at a

price in computation time.

Table 1. Statistics and Error for 0D Analytic Problem

Pr =0.505(0) Pr=0.1p5(0) Pr=0.1p5(0)
RTOL NST ERROR NST ERROR NST ERROR
10~1 144 —1.01 x 1072 159 —2.09 x 10~ 2 196 —1.74 x 1073
10~ 157 —1.65 x 1073 177 —3.08 x 1073 219 —4.81 x107*
108 173 —2.79 x 107° 217 —5.18 x 107° 280 —4.51 x107°

10710 258 —2.93 x 10~7 359 —5.67 x 1077 500 4.72 x 107°
10712 484 —9.84 x 107° 686 —1.72 x 1078 967 —1.87 x 10710

4.4 2D Results

In this section we present results for a 2D problem illustrating the convergence
with respect to reducing tolerances and varying the maximum allowed order
of integration. The simulation domain consists of a square region 1em by lem
with 50 grid points in each direction. The initial fuel density is centered at
x=y=0.0 with a smooth radial distribution given by,

pp(x)=01B (\/nﬂ + y2,0.75) (g/em?®), (27)

where the bicubic radial distribution, B(z, €), is given by,

2 (52)” (6-852), if —e<z<0;
B(.Z',C)E 2(€;€z)2 (6_8€;€Z)7 ifOS.Z'<€; A (28)

0, otherwise.
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°
&

o©
o
©

g/cm3)
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S 8

Fuel Density (
o o o o o
S 8 2 3 8

o
o
=

0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8
time (us) x 107

Fig. 5. Evolution of fuel density for 0D analytic comparison test problem. Markers
indicate the compared test values at P, = 0.50,(0), P = 0.1p,(0) and p, =

0.01p,(0).

This simulation uses the LEOS equation-of-state data base [13] for hydro-
gen which has a uniform density of 5.0 g/cm®. Neumann boundary conditions
are applied at the z = 0 and y = 0 boundaries. Dirichlet boundary conditions
are applied at x = 1 and y = 1 where radiation temperature is set to 0.5 keV'.
Radiation and material temperatures were also set to this value. For this sim-
ulation, the energy per reaction, e,, is set to 1.35 x 1018%. The reaction

C’n'l/3

rate fit parameter, o, is 1.43 x 103 P

reference temperature, Ty, is 1 keV.

Fig. 6 gives the time histories of material and radiation temperatures and
fuel density for the point = 0,y = 0. The material temperature rises slowly
initially; however, the T, dependency in the heating rate leads to a rapid
increase resulting in a nearly complete depletion of the fuel at this point.

For points in the outer region which have a lower initial fuel density, the
evolution is somewhat different. Radiation energy from the hotter central
region passes through this outer region, however the parameters for this sim-
ulation limit the exchange of energy between radiation and material. The
combination of a large diffusion loss rate and a poor coupling of radiation and
material energy results in a lower material temperature. Due to the strong
dependence of the reaction rate on temperature, T4, the lower temperature
outer region can have a significantly lower reaction rate. This results in in-
complete consumption of fuel in this region.

as determined for plots in [16]. The
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10™
% -0- TR =
e - M )
~ = P 2
o 2 >
=) 10" &
= 2
@
qéi a
o ©
F 10 1 T

107°

0.005 0.01 0.015

time (us)

Fig. 6. Time dependence of radiation and material temperatures and fuel density
atx =0,y =0.

Fig. 7 give contours of material temperature, radiation temperature and
fuel density at ¢t = 0.0085us. At this time, the fuel has been significantly de-
pleted in the central region. The material temperature is high around the inner
edge of the remaining fuel and the central material temperature is held down
by the transfer to the cooler radiation. The radiation is heated by the cylin-
drical shell-like region of high material temperature. This heating, along with
diffusion, keeps the radiation temperature in the central region flat. Lastly,
the shell-like region of unconsumed fuel is still present at the end of the sim-
ulation.

In order to study the convergence of this problem with respect to reducing
the tolerance, we made several simulations varying RTOL from 10~7 to 10710
for maximum orders of integration of 2 and 5. For this series of runs the
numerical statistical counters and parameters defined by,

RTOL = relative tolerance,

MO = maximum order allowed,
NST = time steps,

NNI = nonlinear iterations,
NLI = linear iterations,

RT = run time in seconds,

are given in Table 2. Here we see a substantial decrease in the run times due
to using a higher maximum integration order. The time stepping algorithm is
able to use the higher integration order to meet accuracy requirements with
larger time steps resulting in a faster overall runtime for a given accuracy
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Radiation Temperature (keV) Material Temperature (keV) Fuel Density(g/cm3)
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Fig. 7. Radiation temperature, material temperature and fuel density at ¢ =
0.0085us.

with the higher maximum integration order. This advantage is seen in savings
for all integration statistics, including the cummulative numbers of linear and
nonlinear iterations required for solution. Lastly, we again see a significant
increase in run time to meet accuracy requirements for RTOL values below
107°.

Table 2. Statistics for 2D Fusion Fuel Problem

RTOL MO NST NNI NLI RT (sec)
107 2 17,384 20,807 62,322 1,730
1077 5 14,510 17,479 52,369 1,449
108 2 45,768 56,333 136,973 4,152
108 5 35,686 45,797 116,451 3,347
10°° 2 113,545 140,788 292,722 9,313
107° 5 81,535 110,791 224,178 7,414
10~10 2 266,722 323,349 621,406 20,564
10710 5 172,137 242,944 433,689 15,500

As a measure of accuracy for these runs, we determined the maximum
relative error in material temperatures over the entire 2D grid. This quantity
is shown in Fig. 8. The relative error is computed with respect to the most
highly resolved run, RTOL = 107!°, MO = 5. This plot indicates that the
reduction in error is approximately linearly related to RTOL. Note that Fig.
8 also indicates that MO = 5 runs are more accurate than MO = 2 for the
same RTOL. The relative error plots are all similar in that the maximum is
during the sharp rise in material temperature. Relative error plots for the
other components of the system, radiation temperature and fuel density, are
similar and are thus not shown.



16 Dana E. Shumaker and Carol S. Woodward

-2

10
MO =5
-~ RTOL=10"
10°} = RrTOL=10° <8 1
-& RTOL=10"° \,
\g
—_ !> —_—
S 10—4 MO =2 y \ S
s -¢. RTOL=10" J N\ < |
o -6 RTOL=107 7 1i~g \@-- .
s -5l -8 =107 - /=N N
£ 107°|L"B RTOL=10 e\ R
o L & —8— 7 \g- 3
% & 4 = X
-6 _ .- -, =Y o
S10°}o--a-- - 5.
. N
-7 a- - a-- Z
10 ka--
-8
10 ; ; ; ;
5 6 7 8 9 10
time (us) x 1073

Fig. 8. Maximum relative error in material temperature vs time for maximum order,
MO, 2 and 5

5 Conclusions

We have presented fully implicit solutions of a three equation system includ-
ing: (1) radiation energy evolution with diffusion and exchange with material
energy; (2) material energy evolution with reaction heating and exchange with
radiation energy; and (3) fuel density evolution with depletion due to con-
sumption. Our solution method makes use of high order in time integration
methods, inexact Newton-Krylov nonlinear solvers, and multigrid precondi-
tioning using a Schur complement strategy. We have demonstrated accurate
solution of the fusion heating and fuel evolution by comparison with an ana-
lytic solution for a simplified problem. Using a 2D problem which encompasses
all the processes included in our model, we have demonstrated convergence
to a highly resolved result. As before [8], our test problems have shown that
increasing the order of time integration leads to a more accurate and efficient
method.
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